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Abstract: Robot manipulators play an efficient role in modern industry due to its enhanced precision, quality, productivity, and 

efficiency. Controlling these systems becomes difficult because of its non-linearity and time varying behaviors. Adaptive control 

methods and robust control methods are the efficient control mechanisms used to control uncertain systems. In adaptive control 

philosophy the controller is designed to learn the uncertain parameters associated with the system. Whereas, in robust control 

methods are easy to implement the controller has a fixed structure and yields an acceptable performance. In this paper, the various 

robust control techniques like the Linear-multivariable Approach, Passivity based approach, Variable structure controllers, the 

Robust Saturation Approach, the Robust Adaptive approach, which is used to control the motion of rigid robots are discussed and 

multiple papers have been summarized. 

 

IndexTerms- Robust control, Rigid robots, Linear-multivariable Approach, Passivity-Based Approach, Variable-Structure 

Controllers, Robust Saturation Approach. 

I INTRODUCTION 

     In the adaptive approach, the uncertain parameters of the particular system can be understood in designing a controller. In the 

robust approach, the controller structure is fixed- which gives efficient performance for a given uncertainty set. So, robust 

controllers are simpler to implement. To take advantage of both approaches, researchers have attempted to robustify certain 

adaptive controllers. 

     Linear-multivariable approach [1], Passivity based approach, Variable structure controllers, Robust Saturation Approach, 

Robust Adaptive approach are addressed. A linear-multivariable approach globally linearizes and decouples the robot's equations. 

The uncertain feedback terms shows because one does not have access to the exact inverse dynamics the linearization and 

decoupling will not be exact. This may be handled using techniques like multivariable linear robust control [2]. The passive 

nature of the robot is used to solve the same in Passivity based approaches [3]. Robust stability is conformed in Passivity-based 

methods of the closed-loop controller system, Even though uncertain parameter knowledge of the robot it tries to maintain the 

passivity of the closed-loop controller system. Variable Structure Controllers (VSS) are used in nonlinear processes. The robust 

Saturation Approach is used in controllers that are bound to uncertainty. Adaptive control design procedure for nonlinear systems 

with unknown nonlinearities and parametric uncertainty is known as the Robust Adaptive Approach. 

 

II  LINEAR-MULTIVARIABLE APPROACH  

    The linearization of nonlinear robot dynamics about the desired trajectory has come up in history many times and was popular 

[4], [5]. This concept was later developed to the global linearization of nonlinear robotics systems. The trajectory error vector [6] 

𝑒1 = 𝑞 − 𝑞𝑑, 𝑒2 = 𝑒1, 

From the following [7]: 

𝑒̇ = 𝐴𝑒 + 𝐵𝑣 

    

A =[
0 𝐼
0 0

] 

 

B =[
0
𝐼
] 

e =[
𝑒1
𝑒2
] 

𝑣 = 𝐷(𝑞)−1[て− ℎ(𝑞, 𝑑̇)] − 𝑑𝑑̈………………………….……………………….....(1.0) 

We can globally linearize the error system which is reduced for linear control v which gives the desired closed-loop performance 

𝑑̇ = 𝐹𝑧 + 𝐺𝑒 

𝑑̇ = 𝐹𝑧 + 𝐺𝑒 

    = 𝐶(𝑠)𝑒(𝑡)……………………………….………………………….……………….(1.1) 

Where for a system of𝑐(𝑠) with the, 𝑒(𝑡) as an input we can expect 𝑣(𝑡)as the output. 

𝐹 = 𝐺 = 𝐻 = 𝑂 

𝐽 = −𝐾 

𝐽 = −𝐾………………………………………….………………………………………...(1.2) 

This is a static state-feedback controller leading to a nonlinear controller 

て = 𝐷(𝑞)[𝑑𝑑̇ + 𝑣] + ℎ(𝑞, 𝑞̇) …...………….…….……………………………………..(1.3) 
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Due to d(q) the closed-loop system becomes  

て = 𝐷(𝑞)[𝑑𝑑̇ + 𝑣] + ℎ(𝑞, 𝑞̇)…..………….…………………………………………….(1.4) 

Because of uncertainties in 𝐷(𝑞) and ℎ (𝑞, 𝑞̈) the control law cannot be implemented, so we applyてwere 𝐷̂and ℎ̂ are estimates 

of 𝐷 and ℎ 

て = 𝐷̈[𝑞𝑑̈ + 𝑣] + ℎ̂ 

This leads to: 

𝑒̇ = 𝐴𝑒 + 𝐵(𝑣 + 𝜂) 

𝜂 = 𝐸(𝑣 + 𝑞𝑑̈) + 𝐷
−1𝛥ℎ 

𝐸 = 𝐷−1𝐷 − 𝐼𝑛 

𝛥ℎ = ℎ̂ − ℎ….…………………...….………………………….………………………….(1.5) 

The disturbance caused by modeling uncertainties, parameter variation, and measurements with noise in them makes the vector η 

is a nonlinear function of𝑒,𝑣and is an internal disturbance [8]. For a given nonlinear perturbation η, linear multi-variable is a 

completely closed-loop system (FIG 1) that is stable to some extent [9]. So by making a suitable 𝑐(𝑠) value such that the 𝑒(𝑡) is 

stable. 

𝑒̇ = 𝐴𝑒 + 𝑏(𝑣 + 𝜂) 

𝑣(𝑡) = 𝐶(𝑠)𝑒(𝑡) ………………….………………………….………………………….(1.6) 

Reasonable assumptions are to be made for revolute-joint robots,𝑑1,𝑑2,𝛼,𝛽0,𝛽1,𝛽2,are non-negative values 

(d2)−1In<=||D−1||< = (d1)−1In  

 ||E||≤α  

||Δ h||≤β0+β1||e||+β2||e||2 …………………………………………….………………………………...(1.7) 

This should be modified for robots with prismatic joints. 

In general terms small-gain theorem [10], passivity theorem [10], and total stability theorem [11] are used to find the  𝑐(𝑠). Spong 

and Vidyasagar [8] assumed that the bound on the 𝛥ℎ is linear and designed a class of linear compensator 𝑐(𝑠) using a 

factorization approach. Now by choosing an 𝑅(𝑠) which satisfies the design rules minimizing η. Because including better suitable 

quadric bound will not make the 𝐿∞ unstable but will exclude any 𝐿2 results unless reformulated and more assumptions are taken 

into the picture [12]. But by doing this noise in the measurements is not tolerated and the 𝐿2 problem in a similar setting was able 

to show the boundness of the noisy signal.  

Form Freund [13], and Tarn et al [14] static feedback compensators were used extensively 

𝑣 = 𝐶(𝑠)𝑒 = −𝐾𝑒 

𝑒̇ = 𝐴𝑒 + 𝐵(𝑣 + 𝜂) 

 = (𝐴 − 𝐵𝐾)𝑒 + 𝐵𝜂 = 𝐴𝑐 + 𝐵𝜂………………………….………………………………….(1.8) 

In this an extra control loop [14] to minimize the effects of 𝜂 or placing the poles in the left-half plane far enough to guarantee 

stability even when 𝜂 is present. The state feedback control in [15] was used to get the 𝐾𝑒value so that 𝐾(𝑠𝐼 − 𝐴 + 𝐵𝐾)−1𝐵 is 

Strictly Positive Real (SPR). Francis and Wonham [16] model was used as an internal design for a linear controller with 

minimum𝜂by Kuo and Wang [17]. Because η is a nonlinear function of𝑒and𝑣, reducing𝜂does not always mean closed-loop 

stability. 

In the field of robotics, feedback linearization has been used regularly and has been popular for some time now. The variety of 

linear techniques that can be used in the outer linear loop has been its biggest advantage. But because of large control efforts, 

many of the practical applications cannot be possible. This can be overcome by combining the local linearization approach with 

other techniques guaranteeing robust stability [4], [6]. 

 FIG-1 
Paper  Improvements  Limitations / Findings 

[5] Concept was later developed to the 

global linearization of nonlinear 

robotics systems 

The disturbance caused by modeling 

uncertainties, parameter variation, and 

measurements with noise in them makes 

the vector η is a nonlinear function of 

𝑒,𝑣 and is an internal disturbance [8] 

[8] Spong and Vidyasagar assumed that the 

bound on the 𝛥ℎ is linear and designed a 

class of linear compensator 𝑐(𝑠) using a 

Because including better suitable 

quadric bound will not make the 

𝐿∞unstable but will exclude any 𝐿2 
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factorization approach.  results unless reformulated and more 

assumptions are taken into the picture 

[12]. 

[13],[14] Form Freund [13], and Tarn et al [14] 

static feedback compensators were used 

extensively 

The state feedback control in [15] was 

used to get the𝐾𝑒value so that𝐾(𝑠𝐼 −

𝐴 + 𝐵𝐾)−1𝐵 is Strictly Positive Real 

(SPR). 

[16] Francis and Wonham [16] model was 

used as an internal design for a linear 

controller with minimum𝜂by Kuo and 

Wang [17]. 

But because of large control efforts, 

many of the practical applications 

cannot be possible. 

[4],[6] This can be overcome by combining the 

local linearization approach with other 

techniques guaranteeing robust stability 

[4], [6]. 

- 

 

III Passivity-Based Approach 

    In models based on the Passive structure of a rigid robot ℎ(𝑞, 𝑞̇) = 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞), 𝐷(𝑞) − 2𝐶(𝑞, 𝑞̇)  is skew-

symmetric [3]: 

𝐷(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) =て…………………….…………………………………...(2.1) 

Theorem [18] is obtained because of this. 

The Lagrange-Euler dynamical equations of a rigid robot define a passive mapping from て  to 𝑞̇. 

⟨𝑞̇,て⟩𝑇 = ∫ 𝑞𝑇̇
𝑇

0
て𝑑𝑡 ≥ −𝛽…………………….……………………………………….(2.2) 

Using this, the loop can be closed from 𝑞̇ toて with the passive system being asymptotic stable using the passivity 

theorem [10]. But the stability of 𝑒1 ˙ is seen and not of  𝑒1, but this can be solved a system mapsて  to a vector  𝑟  

( ie. filtered version of 𝑒1) and the loop closing from  −𝑟  and て giving asymptotic stability to both 𝑒1˙ and 𝑒 1 [18][19]. 

て = 𝐷(𝑞)𝑎 + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) − 𝐾, (𝑞̇ − 𝑣)…………………….……………………....(2.3) 

𝑣 = 𝑞 − 𝑟…………………….…………………………………………………….…...(2.4) 

𝑟 = −[𝑠𝐼 + 𝐾 (𝑠) 𝑠⁄ ]𝑒1 = −𝐹(𝑠)−1𝑒1…………………….……………………...……….(2.5) 

𝑎 = 𝑣̇.…………………….……………………………………………………………..(2.6) 

where 𝐹(𝑠) is strictly proper and 𝐾 is a positive matrix, then asymptotic stability of 𝑒1 ˙ and 𝑒1 is guaranteed.  

FIG 2 

Considering the control law: 

て = −𝛬(𝑠)𝑒1 + 𝑢2…………………….………………………………………………...(2.7) 

Where  𝛬(𝑠)  is an SPR transfer function, external input 𝑢2 is bounded in 𝐿2. Substituting (2.7) in (2.1) we get: 

𝑟 = −𝛬(𝑠)𝑒1̇…………………….……………………………………………………….(2.8) 

The values of 𝑒1 ˙ and 𝑟 are bound with 𝐿2 and this can be deduced by choosing values of 𝛬(𝑠) and 𝑢2 . Since 𝛬(𝑠)−1 is 

SPR (inverse of SPR) we can say 𝑒1 ˙ is asymptotically stable as 𝑒1̇ = −𝛬(𝑠)−1𝑟. 

In the case of time-varying trajectories [𝑞
𝑑
𝑇𝑞

𝑑
𝑇]𝑇 , the error 𝑒1is bounded but not asymptotically stable [20]. Regardless 

of the robot's parameters, a controller is guaranteed to be robust until 𝛬(𝑠) is SPR and 𝑢2 is𝐿2. 

て = −𝐾1(𝑞)𝑒1 − 𝐾2(𝑞)𝑒2 + 𝑔…………………….………………………………...…..(2.9) 

Even if 𝐷(𝑞) is not known stability is guaranteed by the passivity of the robot and feedback law and the 

accommodation of contact forces and larger uncertainties makes it’s a good approach whereas the requirement of 
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𝐷(𝑞) value to be known to find the 𝐾 !and 𝐾2values (2.9) on which the closed-loop performance depends ends up as a 

drawback. 

 

Paper  Improvements  Limitations / Findings 

[3] Skew-symmetric models based on the 

Passive structure of a rigid robot were 

developed. 

- 

[18] The Lagrange-Euler dynamical 

equations of a rigid robot define a 

passive mapping fromてto𝑞˙. 

But the stability of 𝑒1˙is seen and not 

of  𝑒1. 

[18],[19] This can be solved a system maps 

てto a vector 𝑟 (ie. filtered version 

of 𝑒1 ) and the loop closing from −𝑟 

and て giving asymptotic stability to 

both 𝑒1˙ and 𝑒1 [18][19]. 

Even if 𝐷(𝑞) is not known stability 

is guaranteed by the passivity of the 

robot and feedback law and the 

accommodation of contact forces 

and larger uncertainties makes it’s a 

good approach whereas the 

requirement of 𝐷(𝑞) value to be 

known to find the 𝐾! and 𝐾2 values 
(2.9). 

 

IV Variable-Structure Controllers 

   Many nonlinear processes are controlled by VSS theory, taking this approach error to ‘switching surface’ needs to be done only 

once, after that the system goes into ‘sliding mode’ where modeling disturbances and uncertainties will not affect the mode 

[21],[22]. The point regulation problem (𝑞𝑑̇ = 0) was solved in the first-ever publication of the VSS Theory by Young [22] 

usingて
𝑖
=て + 𝑖, 𝑖𝑓𝑠𝑖(𝑒|𝑖, 𝑞𝑑 > 0)  

て
𝑖

− 
, 𝑖𝑓𝑠𝑖(𝑒|𝑖 , 𝑞𝑑̇) < 0   …………………….………………………………….(3.0) 

Where 𝑖 goes from 1… . . . 𝑛 for an 𝑛 − link robot, and 𝑠𝑖  are the switching planes, 

𝑠𝑖(𝑒|𝑖 , 𝑞𝑖˙ ) = 𝑐𝑖𝑒|𝑖 + 𝑞𝑖˙  , 𝑐𝑖 > 0  

Bounds on uncertainties and sliding surfaces 𝑠1, 𝑠2, … . . 𝑠𝑛 are shown using the hierarchy, onceて
+

andて
−

are found to drive the 

error signal to the intersection of sliding surfaces, the error will slide to zero. By this sliding mode, this model eliminates 

nonlinear coupling of joints which was an issue in [23],[24],[25]. These also have a discontinuous 𝑠𝑖 = 0 creating chattering 

which my trigger unmodeled high-frequency dynamics. 

Slotine modified the VSS controller called “suction control” to solve this problem [26], [27]. The problem was solved by allowing 

sliding surfaces to be time-varying. In the first step, the control law forces the path towards the sliding surface. In the second step, 

the controller itself is smoothed inside a possibly time-varying layer. This helps in the optimal balance between bandwidth and 

precision. 

The VSS controller in which inversion of the inertia matrix was avoided in [28], [29]. Though it’s only theoretically impressive it 

does not exploit the physics of the robots and the asymptotic stability of the error is sacrificed to avoid chattering. 

Paper  Improvements  Limitations / Findings 

[21],[22] Many nonlinear processes are controlled 

by VSS theory, 

taking this approach error to ‘switching 

surface’ needs to be done only once, 

after that the system goes into ‘sliding 

mode’ where modeling disturbances and 

uncertainties will not affect the mode 

[21],[22] 

[23],[24],[25] Bounds on uncertainties and sliding 

surfaces 𝑠1, 𝑠2, … . . 𝑠𝑛  are shown using 

the hierarchy, once  て+ and て− are 

found to drive the error signal to the 

intersection of sliding surfaces, the error 

will slide to zero. 

These also have a discontinuous 𝑠𝑖 = 0 

creating chattering which my trigger 

unmodeled high-frequency dynamics. 
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[26],[27] Slotine modified the VSS controller 

called “suction control” to solve this 

problem 

It does not exploit the physics of the 

robots and the asymptotic stability of 

the error is sacrificed to avoid 

chattering. 

 

V Robust Saturation Approach 

Using the auxiliary saturating controller to compensate for unknown elements present in the dynamics of the robot is discussed in 

this. 

𝐷(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑍(𝑞, 𝑞̇) =て …………………….………………………………….(4.0) 

Where 𝐷(𝑞)𝑞 ¨  and  𝐶(𝑞, 𝑞̇)  are defined in (2.1) and  𝑍 (𝑞, 𝑞̇) is representing friction, gravity, and bounded torque disturbances. 

Because the controller is only dependent on uncertainty bounds it is considered as a robust controller.  

𝑑𝑖𝐼𝑛 = 𝐷(𝑞)𝑑2 𝐼𝑛  

 ∥ 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑍(𝑞, 𝑞̇) ∥ ≤ 𝜍0 + 𝜍1 ∥ 𝑒 ∥ +𝜍2 ∥ 𝑒 ∥
2 ………………………….………………... (4.1) 

Where 𝑑𝑖′𝑠 and 𝜍𝑖′𝑠 are positive scalar constants and the trajectory error𝑒is defined 

To prove the ultimate boundedness of 𝑒 Spong [30] used Lyapunov stability theory, Spong’s controller is representative of this 

class and given as: 

て = (2𝑑1𝑑2)(𝑑1 + 𝑑2)
−1. [𝑑𝑑̈–𝐾2𝑒2 − 𝐾1𝑒1 − 𝑣𝑟] + 𝐶(𝑞, 𝑞̇) + 𝑍(𝑞, 𝑞̇)  

Where  Vr = {
(𝐵𝑇  𝑃𝑒)(||𝐵𝑇  𝑃𝑒||)

−1
𝜌;      𝑖𝑓 ||𝐵𝑇  𝑃𝑒|| > ꜫ

(𝐵𝑇𝑃𝑒)ꜫ−1𝑝;    𝑖𝑓||𝐵𝑇𝑃𝑒|| ≤  ꜫ
….……………….…….…………..(4.2) 

 

And 𝜌 = (1 − 𝛼)−1[𝛼 ∥ 𝑑𝑑 ∥ + ∥ 𝐾𝑖 ∥. ∥ 𝑒𝑖 ∥ + ∥ 𝐾2 ∥. ∥ 𝑒2 ∥ +(𝑑1)
−1𝛷  

𝛷 = 𝛽0 + 𝛽1 ∥ 𝑒 ∥ +𝛽2 ∥ 𝑒 ∥
2  

 

𝛼 = (𝑑2 − 𝑑1)(𝑑2 + 𝑑1)
−1…………………….…………………………………………….....(4.3) 

Where matrix P is symmetric,  

𝐴𝐶
𝑇𝑃 + 𝑃𝐴𝑐 = −𝑄 ……………………..…………………………………………………….….(4.4) 

The positive-definite solution of the Lyapunov equation where 𝑄 is symmetric and positive-definite matrix. 

It becomes clear that  𝑣𝑟  depends on 𝐾1and 𝐾2through𝑝his however my interfere with the ability to adjust the Serov gains, so: 

て = −𝐾2𝑒2–𝐾1𝑒1 − 𝑣𝑟(𝜌, 𝑒1, 𝑒2, 𝜀)  

𝜌 = 𝛿0 + 𝛿1 ∥  𝑒 ∥ +𝛿2 ∥  𝑒 ∥
2 …………………….………………………………………...(4.5) 

Where 𝛿𝑖′𝑠 are the positive scalars Note 𝑝 is no longer contains the servo gains so 𝐾1 and 𝐾2 can be varied without tampering 

auxiliary control 𝑣𝑟 . If the initial error is 𝑒(0) = 0 and 𝑘2is chosen as 𝑘2 = 2𝐾1 = 𝐾𝑟𝐼𝑛 the tracking error may be bounded as  

 ∥  𝑒 ∥ ≤ [4 (2𝑘𝑣 +
3𝑑2

2
) 𝜀(𝑘𝑣𝑑1)

−1]
(12)

  

𝑘𝑑 > ∥  𝑇𝑑  ∥ …………………….…………………………………………………………….(4.6) 

A similar simulation of a controller using Manutee R3 was made by Corless [31] and also by Chen which required an acceleration 

measurement in [32]. Saturating-type feedback derived from Lyapunov-stability theory was used by Gilbert and Ha in [33] to 

guarantee the ultimate boundedness of tracking error.  

Paper  Improvements  Limitations / Findings 

[30] Using the auxiliary saturating controller 

to compensate for unknown elements 

present in the dynamics of the robot 

Because the controller is only 

dependent on uncertainty bounds it is 

considered as a robust controller. 

[30] The positive-definite solution of the 

Lyapunov equation where 𝑄 is 

symmetric and positive-definite matrix. 

It becomes clear that 𝑣𝑟  depends on 𝐾1 

and 𝐾2 through 𝑝 his however my 

interfere with the ability to adjust the 

Serov gains, 

[31], [32] A similar simulation of a controller 

using Manutee R3 was made by Corless 

and also by Chen which required an 

acceleration measurement in. 

- 

 

VI Robust Adaptive Approach 

Combining adaptive and robust control concepts a scheme was derived by Slotine [34] in which𝑟vector of estimated parameters 

and 𝑌(. ) is a 𝑛𝑋𝑟  regression matrix is given by 𝛷̂. 
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𝜏 = 𝜏𝑎 = 𝑌(. )𝛷̂–𝐾2𝑒2–𝐾1𝑒1 
𝑑𝛷̂

𝑑𝑡
= −𝑌𝑇(. )[𝑒1 + 𝑒2]…………………….…………………………………………….(5.0) 

The tracking error should be asymptotically stable. If there is no error in (2.1). However may become unbounded in presence of 

bounded disturbance or unmodeled dynamics [35],[36]. Parameter estimates remain bounded this was shown by Slotine in [37] if 

one uses 

𝜏 = 𝜏𝑎 + 𝑘𝑑𝑠𝑔𝑛(𝑒1 + 𝑒2)  …………………….……………………………………….. (5.1) 

Where 𝜏𝑎is explained in (5.2) and is a positive scalar constant following 𝑘𝑑 > ∥ 𝑇𝑑 ∥ condition. To compensate for both 

unmodeled dynamics and bounded disturbances, Reed introduced 𝜎 − in [38] modifying the original work done by Loannou in 

[39]. The law now looks like  

𝜏 = 𝜏𝑎 = 𝑌(. )𝛷̂–𝐾2𝑒2–𝐾1𝑒1 

 
𝑑𝛷̂

𝑑𝑡
= −𝑌𝑇(. )[𝑒1 + 𝑒2] − 𝜎𝛷̂ …………………….……………………………………...(5.2) 

Where  

𝜎 =

{
 
 

 
 0;     𝑖𝑓 ||𝜙̂|| < 𝜙0

||𝜙̂|| (𝜙0)
−1;  𝑖𝑓 𝜙0 < ||𝜙̂|| < 2𝜙0

1;             𝑖𝑓 ||𝜙̂|| > 2𝜙0

  

And  

 

𝛷0 > ∥ 𝛷 ∥  …………………….………………………………………………………...(5.3) 

Using this it was shown that tracking error and all closed-loop signals are bounded. 

The other approach by Singh [40] combining Spong’s controller in (4.2) to estimate 𝛽0,𝛽1,𝛽2 uncertainty in (4.3), making 

knowledge of the exact size of uncertainties not necessary. Certain instability in adaptive control robots was addressed by Spong 

and Ghorbel in [41].  

 

Paper  Improvements  Limitations / Findings 

[34] Combining adaptive and robust control 

concepts a scheme was derived by 

Slotine 

Which may become unbounded in 

presence of bounded disturbance or 

unmodeled dynamics [35], [36]. 

 [37] Parameter estimates remain bounded 

this was shown by Slotine in if one uses 

𝜏 = 𝜏𝑎 + 𝑘𝑑𝑠𝑔𝑛(𝑒1 + 𝑒2) 

Using this it was shown that tracking 

error and all closed-loop signals are 

bounded. 

[40] The other approach by Singh 

combining Spong’s controller in (4.2) 

to estimate 𝛽0,𝛽1,𝛽2 uncertainty in (4.3) 

making knowledge of the exact size of 

uncertainties not necessary. Certain 

instability in adaptive control robots 

was addressed by Spong and Ghorbel 

in [41]. 

 

VII Conclusion 

    The major experimental robust control approaches for a rigid robot were reviewed. Though the controllers were Robust in 

nature and could handle a range of uncertain parameters the choice of which control to use is a complex question. The Linear 

multivariable approach can be used where specifications of the device are linear in nature ( ie. Damping ratio, percent overshoot, 

etc ), But the main drawback of this is that it may lead to high gain control laws to get robust control. When it comes to the 

Passive controller though they are easy to build in a practical but their performance is less than desired. With that, the robust 

version of the passive controller does not exploit the physics as the adaptive version which may cause some issues in a few 

scenarios. VSS theory is used in many nonlinear processes where. error to ‘ switching surface ’ needs to be done only once, after 

that the system goes into ‘sliding mode’ where modeling disturbances and uncertainties will not affect anymore. In the Robust 

Saturation approach, the auxiliary saturating controller is used to compensate for the unknown elements present in the dynamics 

of the robot. 

Robust Adaptive Approach is used for a class of nonlinear systems with both parametric uncertainty and unknown nonlinearities. 

Though robot dynamics are nonlinear in nature some successful controllers have used the robot’s physics. This information 

becomes very useful when force control comes into the picture. 
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